Combining Remotely Sensed Data and Ground-Based
Radiometers to Estimate Crop Cover and Surface
Temperatures at Daily Time Steps
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Abstract: Estimation of evapotranspiration (ET) is important for monitoring crop water stress and for developing decision support
systems for irrigation scheduling. Techniques to estimate ET have been available for many years, while more recently remote sensing data
have extended ET into a spatially distributed context. However, remote sensing data cannot be easily used in decision systems if they are
not available frequently. For many crops ET estimates are needed at intervals of a week or less, but unfortunately due to cost, weather, and
sensor availability constraints, high resolution (<100 m) remote sensing data are usually available no more frequently than 2 weeks. Since
resolution of this problem is unlikely to occur soon, a modeling approach has been developed to extrapolate remotely sensed inputs
needed to estimate ET. The approach accomplishes this by combining time-series observations from ground-based radiometers and
meteorological instruments with episodic visible, near infrared, and thermal infrared remote sensing image data. The key components of
the model are a vegetation density predictor and a diurnal land surface temperature disaggregator, both of which supply needed inputs to
a surface energy balance model. To illustrate model implementation, remote sensing and ground-based experimental data were collected
for cotton grown in 2003 at Maricopa, Ariz. Spatially distributed cotton canopy densities were forecasted for a 22-day interval using
vegetation indices from remote sensing and fractional cover from ground-level photography. Spatially distributed canopy and soil surface
temperatures were predicted at 15-min time steps for the same interval by scaling diarnal canopy temperatures according to time of day
and vegetative cover. Considering that the predictions span a rapid growth phase of the cotton crop, comparison of spatially projected
canopy cover with observed cover were reasonably good, with R?=0.65 and a root-mean-squared error (RMSE) of 0.13. Comparison of
predicted temperatures also showed fair agreement with RMSE=2.1°C. These results show that combining episodic remotely sensed data
with continuous ground-based radiometric data are a technically feasible way to forecast spatially distributed input data needed for ET
modeling over crops.
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geneous crop cover and optimum agronomic management.
Among these, the most commonly used for irrigation scheduling
purposes is the crop coefficient (K,)/reference ET method (Jensen
and Allen 2000), such as those in Food and Agricultural Organi-
zation of the United Nations [Food and Agriculture Organization
(FAQ)]-24 (Doorenbos and Pruitt 1977) and FAO-56 (Allen et al.
1998). However, ET predictions for K -based approaches are sub-
ject to considerable inaccuracies where vegetation is spatially
variable or where—despite its apparent uniformity—vegetation is
stressed from salinity or water deficit (Martin and Gilley 1993;
Allen et al. 2005; Hunsaker et al. 2005).

The only practical way to consider effects of spatial variability
upon ET is to use remotely sensed images, which can potentially
observe changes in land cover at submeter scales. Many contri-

Introduction

Accurate estimation of evapotranspiration (ET) is important for
many applications where water supplies are scarce. For irrigated
agriculture in particular, knowledge of ET is especially important
for effective water scheduling and management (Howell 1996;
Jensen et al. 1990). Several well-established ET estimation ap-
proaches that exist are consistent and can perform well for homo-
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butions, particularly those employing thermal infrared observa-
tions, have shown how remote sensing techniques could be used
operationally (Bartholic et al. 1970; Brown and Rosenberg 1973;
Jackson et al. 1977; Soer 1980; Seguin and Itier 1983; Hatfield
et al. 1984; Mecikalski et al. 1999). Although sensors such as
Landsat and ASTER provide the necessary resolution (15-90 m)
to distinguish between land cover types, the temporal repetition
rate is rarely better than 16 days. For crop applications at farm
scales, where critical irrigation decision intervals are short, it is
likely that such infrequent image data would have limited value.
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Fig. 1. FISEO3 experimental layout for cotton grown at Maricopa,
Ariz. in 2003

Clearly, more frequent repeat periods for higher resolution
satellite sensors are needed. Such platforms do exist, examples of
which are Rapid Eye (www.rapideye.de); QuickBird (www.digi-
talglobe.com); and SPOT (www.spot.com), but in these instances
thermal infrared data are not available (Anderson and Kustas
2008). Furthermore, agricultural users are constrained by image
acquisition costs, cloudy skies, and limited spatial coverage. Fu-
ture platforms are being proposed that would have repeat intervals
as short as 1 week, for example, a high-resolution instrument with
a multispectral thermal infrared capability (hyspiri.jpl.nasa.gov).

Recognizing that for the foreseeable future, remote sensing
data of the type, quality, cost, and frequency needed for crop
water management will likely not be available, a remote sensing
estimation approach is proposed that uses a combination of re-
mote sensing images and ground-based, fixed-location radiom-
eters. In the approach, spatially distributed information is
provided from image data, while time-series information is pro-
vided from ground-based radiometers. In this proposed scheme,
time-series maps of vegetation cover and surface temperatures
can be generated for frequent time intervals (e.g., 1/4 hour) and
ultimately can be used as inputs to a surface energy balance
model.

FISEQ3 Experiment

To demonstrate the proposed model (elaborated in the next sec-
tion), experimental data were used from an intensive cotton field
experiment known as FAO Irrigation Scheduling Experiment
2003 (FISE03, Hunsaker et al. 2005). FISEQ3 included a ground
field site with associated meteorological, soil, agronomic, and hy-
drologic instruments, plus 10 remote sensing overflights using a
helicopter-based platform.

The site (Fig. 1) is a 1.3 ha field at the University of Arizona
Maricopa Agricultural Center (MAC) approximately 50 km south
of Phoenix, Ariz. (33.067°N, 111.967°W, 361 m above seca
level). For the 2003 experiment, cotton was planted in a 4 by 8
matrix of 32 randomized 11.2 m X 21 m plots. Plots were identi-
fied by three digit numbers, ranging between 101 and 408, and

also by three-letter codes. The numbering scheme denotes row
and column positions for each plot, while the letter codes denote
experimental treatments. These codes identify the irrigation
scheduling scheme [“F” and “N”: FAO versus normalized differ-
ence vegetation index (NDVI) approaches]; the planting density
(S,” “I,” and “D”: sparse, typical, and dense); and nitrogen lev-
els (“L”” and “H”: low and high). Additional plots, numbered 901—
908 and located within the middle of the site, were not a main
part of the experimental design but did provide important surface
temperature data for unvegetated dry and wet soil conditions. See
Hunsaker et al. (2005) for details.

Deltapine 458BR (Gossypium hirsutum L.), a mid-to-full ma-
turing transgenic cotton variety grown in the state, was planted at
the field site on April 7 and 8, 2003. A four-row planter (Model
1700, Deere and Co., Moline, Ill.), calibrated at a rate of 10
cotton seeds m~2, was used to plant single rows of seed in the
center of the bed (1.016-m bed spacing) for both the T and S
density plots (the sparse treatment plots were later hand thinned
to 5 plants/m? after emergence). Dense plots (20 plants/m?) were
planted with a Monosem twin-row precision vacuum planter
(Model NG, A.T1, Inc., Lenexa, Kan.) at 0.2-m spacing along the
bed. As described in Hunsaker et al. (2005), after the cotton was
established, irrigation scheduling was predicated on replacing 1.1
times estimated ET when soil water depletion from the root zone
reached a level of 45%. The estimated daily ET was calculated for
all plots using the FAO-56 dual crop coefficient procedures (Allen
et al. 1998). All FAO plots were irrigated according to a single
basal crop coefficient (K,,) curve, whereas the crop coefficients
for NDVI plots were generated separately for each plot using
ground-based NDVI measurements and a previously developed
relationship between K, and NDVI. Nitrogen applications for the
high N level plots followed locally recommended practices for
cotton (Doerge et al. 1991), predicated on leaf petiole nitrate con-
tent levels that were periodically monitored in the plots during the
season. All high N plots received a total seasonal application of
112 kg N ha™!, whereas no N was applied to the L plots. Final
yields were obtained from seed cotton that was hand-picked
within a final harvest area measuring approximately 24 m? in the
south half of each plot and then ginned at MAC.

A primary objective of FISEO3 was development of remote
sensing-based irrigation scheduling techniques, and consequently
the collected data were valuable for remote sensing forecasting
too0. Specifically, the water budget was monitored in detail, allow-
ing ET estimation on a plot by plot basis at daily to weekly time
scales. The plots were flood irrigated with each surrounded by
border dikes, where soil volumetric moisture contents were sys-
tematically measured immediately prior to, following, and be-
tween irrigation events from 3 m deep access tubes near the
centers of each of the 32 plots. At each location, neutron scatter-
ing data from a field-calibrated Campbell Pacific Nuclear instru-
ment were combined with a time domain reflectometer (Soil-
Moisture Equip. Corp.) to return soil water content between the
surface and 2.8-m depths. This range of depths allowed monitor-
ing of shallow soil evaporation, root-zone uptake, and soil water
loss from infiltration at the plot center.

Meteorological and land surface temperature data collected at
FISEO3 included one Eppley 8-48, solar radiometer, two R.M.
Young photochopper type anemometers at a height of 2 m, air
temperature (dry and wet bulb), aspirated USDA/ARS-designed
ceramic wick psychrometers, and a Texas Electronics rain gauge.

To monitor soil and plant canopy temperatures, infrared ther-
mometers were deployed in 11 plot locations at different times
during the cotton growing season. The thermometers were Ever-
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est (Everest Interscience, Tucson, Ariz.) Models 3073 and 3500,
and Apogee (Apogee Instruments, Logan, Utah) IRT model IRT-
P5. Of these, nine were pointed toward cotton plants at ~30°
from horizontal, and two were pointed toward bare soil at ~60°
from horizontal. These angles were chosen to maximize the
canopy and soil signals while reducing effects from instrument
mounts.

Remote sensing data at FISEQ3 were collected on 10 occasions
between May 7, 2003 and October 13, 2003 using a helicopter
platform. This study used remote sensing data acquired on June
17 and July 9 [i.e., Day of Year (DOY) 168 and 190]. Data ac-
quired were of two kinds: surface temperatures from a thermal
infrared camera and vegetation indices from a visible-near infra-
red camera.

The temperature images were acquired by a FLIR Systems
SC2000 thermal camera (FLIR Systems AB, Danderyd, Sweden),
which contained a dynamically calibrated microbolometer detec-
tor 240X 320 array with 1.3 X 1073 rad pixel instantaneous field
of view. Considering the 760-m flight elevation, effective reso-
lution was ~1 m. For compatibility with higher resolution visible
near infrared (VNIR) data, the FLIR data were subsampled to 0.5
m. The specific camera used was band pass filtered between 10.0
and 13.0 pm to reduce errors from highly variable emissivities
commonly encountered at shorter wavelengths. Calibration tests
showed accuracies <<1.0°C for controlled conditions.

The vegetation index image data were acquired from a Duncan
MS3100, 8-bit, three-band camera (Redlake, Tucson, Ariz.), with
detectors for a red band at 670 nm, a far-red band at 720 nm, and
a near infrared band at 790 nm, each at full-wave-half-maximum
of 10 nm. NDVI was constructed from the red and near infrared
reflectances. Prior to this construction, reflectance data were cre-
ated from Duncan imagery by normalization against four §
X 8 m field deployed calibration tarps (Group VIII Technologies,
Provo, Utah) using procedures similar to that described in Moran
et al. (2001). These tarps had nominal reflectance values of 4, 8,
48, and 64%.

Last, to improve estimation of fractional cover, weekly nadir-
viewing photographs of cotton were collected throughout the
field. These were obtained with a conventional film camera
mounted on a hand-carried pole ~2 m long and diagonally posi-
tioned I m south of midficld access boardwalks (Fig. 1).
Green:red ratio images were created from the digitized images
and used to generate sample estimates of fractional cover (French
et al. 2009).

Forecasting Remotely Sensed Cover and Land
Surface Temperature

The remote sensing forecasting method consists of three main

components:

1. A temperature-based remote sensing surface energy balance
model that computes net radiation, sensible heat flux, soil
heat flux, and latent heat flux;

2. A vegetation density submodel that can forecast changing
crop cover at daily time steps using remotely sensed vegeta-
tion indices; and

3. A land surface temperature submodel that can forecast
canopy and soil temperatures at minute to hourly time steps
using ground-based radiometers.

This study considers the latter two components, energy bal-
ance model input data. When these inputs are combined, it be-
comes feasible to estimate spatially distributed ET at frequent

time steps for a few weeks following acquisition of remote sens-
ing image data.

Energy Balance Model

To understand the rationale for modeling extrapolated cover and
land surface temperatures, a brief description of a temperature-
based surface energy balance model is needed. Remote sensing
surface energy balance models estimate ET by modeling the four
most important energy flux components: net radiation: R, soil
heat: G, sensible heat: H, and latent heat: LE

R,~G=H+1E (1)

where the left hand side represents available energy flux and the
right hand side represents turbulent flux. Instantaneous ET (in
terms of liquid water depth) is obtained by solving Eq. (1) for LE
and dividing by the product of water density and the latent heat of
vaporization. Estimation of ET at daily time steps requires addi-
tional assumptions or information. One common approach as-
sumes constant evaporative fraction for the day (Lhomme and
Elguero 1999). However for the proposed spatial estimation
method, LE estimates could be available at frequent time steps
(i.e., 15 min in this study) so that daily BT is estimated from a
summation over a 24-h period.

Given frequent input values, a variety of energy balance
modeling approaches could be used. Examples of documented
methods include SEBAL/Metric (Bastiaanssen et al. 1998; Allen
et al. 2007), the surface energy balance system, Su (2002), a
water deficit estimator (Moran et al. 1994), and the vegetation-
temperature triangle approach (Carlson et al. 1994, 1995). For
this study a form of the two source energy balance (TSEB) model
(Norman et al. 1995) was chosen because the proposed tempera-
ture disaggregation approach is well suited to the two source
methodology. A distinguishing feature of TSEB is its computation
of LE in two energy flux streams: one for the vegetation canopy
and another for the soil surface.

Doing so allows for better modeling of available radiative en-
ergy and parameterization of aerodynamic transport resistances.
Using the spatial estimation approach to be described, TSEB can
be implemented as described in Norman et al. (1995), except that
canopy temperatures do not need the Priestley-Taylor constraint
(Priestley and Taylor 1972) since they are directly estimated from
observations.

Vegetation Density Modef

One of the chief values of remote sensing image data are the
ability to generate maps of spatial vegetation cover density
throughout the fields of interest. Knowledge of cover density is
important for energy balance models such as TSEB since it is
used to estimate partitioning of net radiation and constrain canopy
transpiration. Remote sensing of canopy cover can be accom-
plished with the construction of a vegetation index, such as the
NDVI (Rouse et al., 1973). Correspondence between cover and
NDVI, though imprecise, is established empirically, for example,
with the squared scaled NDVI relationship described by Carlson
et al. (1995), or semiempirically through a power function rela-
tion described by Choudhury (1987) and Choudhury et al. (1994),

In the current study, the Choudhury approach was imple-
mernted using remote sensing image data
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Cotton Fractional Cover Estimation
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Fig. 2. Histogram of the green/red ratio for a nadir-viewing photo-
graph taken of cotton growing in experimental plot 305 on June 17,
2003 (DOY 168). The bimodal distribution allows accurate discrimi-
nation between bare soil (which has a dominant red color) and cotton
leaves. The confusion interval (ratio 0.98-1.1) was found to include
10.2% of the image pixels.

NDVI,,, - NDVI |7
e

NDVI,,, - NDVI,,,

where f represents fractional vegetation cover; NDVI,,, repre-
sents full cover; NDVIL,,, represents bare soil; and the exponent p
is a function of leaf orientation distributions within a canopy. p
ranges between 1.25 for planophile canopies to <<0.7 for erecto-
phile canopies; for the current study 1.0 was used. Thus Eq. (2)
allows transformation of remotely sensed NDVI data into spa-
tially distributed estimates of fractional cover.

To provide the best possible estimates of cover, Eq. (2) was
calibrated using nadir-view photography previously mentioned in
the FISEO3 Experiment section. In an operational setting such an
approach would probably be impractical, and in such cases fore-
cast mean cover would have to rely upon generalized calibrations
of Eq. (2). But at FISEQ3, use of the technique was a research tool
designed to seek the best possible fractional cover estimates.
Implementation of the method was straightforward and empirical:
using green and red bands from high-quality photographs, histo-
grams of the green:red ratio created from image samples collected
throughout the field were constructed and a threshold value was
chosen to best divide the bimodal distributional pattern (Fig. 2).
Soil conditions in other settings might not allow good separation
but at Maricopa the reddish soil contrasted strongly against green
leaves. The chosen threshold evenly divided the bimodal pattern
representing soil and vegetation. Fractional cover was then ob-
tained by summing all image pixel values greater than the thresh-
old and dividing by the total number of sampled pixels. In this
instance cover classification uncertainty, corresponding to values
between the peaks was ~5%.

To construct maps of predicted spatially distributed cover, the
approach assumed that the range of cover values could be dy-
namically modeled with a smooth statistical distribution function
for locally specified management zones. For each zone, predicted
spatial patterns were modeled by using estimates of mean cover
and observations of spatially distributed NDVI from the recently
available remote sensing image data.
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Fig. 3. Fractional cover for cotton in all FISEO3 plots. The box
symbols display the median and interquartile range of cover, while
the whiskers display the 95th percentile range. Note that cover vari-
ability increases twice during a growing season: once during the
growth phase (~DOY 176 or June 25), and again during senescence
(>DOY 250 or September 7).

The chosen function for this study was the Beta distribution
which is a bounded but flexible distribution function that can be
adapted to a wide range of patterns using only two shape param-
eters (« and B). For unimodal distribution patterns both param-
eters will be >1, with a < for sparse cover, and o >3 for dense
cover. Because the bounds for cover are the same for the standard
Beta function (i.e., 0 to 1), no change of scales was necessary.

The Beta shape parameters « and 3 were computed using the
method-of-moment estimators

B2
B=(1—f){f—(;——ﬁ—l} 4)

For existing remote sensing image data, estimation of o and B
factors follows directly from observed cover means and vari-
ances. For times beyond the most recent remote sensing data,

assumed values for f and f,,, were needed.

For this study, mean cover estimates were obtained from pre-
viously mentioned nadir-view photographs, while cover variance
was assumed to be the same as observed within the most recently
available remote sensing image. As shown in Fig. 3, assuming
constant cover variance was reasonable for short time intervals,
but less so when considering the full growing season. At FISE(3,
variance of cotton cover increased two times: once during the
midgrowth phase and again during senescence. However, these
variance changes were slow at fortnightly prediction time scales
and thus consequent errors from the constancy assumption were
small.

Once Beta shape factors were known for both the remote sens-
ing image data acquisition time and for the forecast time, pre-
dicted cover was computed by assuming that the quantile for each
pixel cover value did not change. Hence, even though mean cover
values did change with time, the cover distribution could be pre-
dicted by using the remote sensing-based cover quantiles with the
forecast shape parameters o and B.

To illustrate the procedure, mean fractional cover estimates,
obtained from nadir-view photography over one experimental plot
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FISE03 DOY 190
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Fig. 9. Observed versus predicted cotton canopy cover on DOY 190
(July 2003). Shading indicates count frequencies where dark tones
represent the highest counts. The 1:1 line indicates 10% prediction
accuracy for cover exceeding 65%. Results for sparser cover were
biased by 20%.

Discussion

Outcomes from initial experimentation with an airborne and
ground-based image forecasting system show that land surface
temperatures and vegetative cover can be forecasted reasonably
accurate for 2-week time intervals during a rapid growth phase of
a cotton crop. This time interval corresponds closely to typical
repeat periods for sun-synchronous satellites, which are likely the
only remote sensing platform for routine agricultural applications.
The prime motivation for this approach was to provide the needed
inputs for modeling ET when remote sensing image data are un-
available. A result of this study was a demonstration of its tech-
nical feasibility. Whether or not the approach is operationally
feasible, however, requires a more comprehensive study, includ-
ing economic analyses.

Clearly, no modeling procedure can replace actual remote
sensing data, nor can the procedures accurately locate crop water
stress unless specific ground-based observations are available for
such conditions. Nonetheless, the modeling procedures do pro-
vide a mechanism to predict the best estimated daily ET when
such data are otherwise unavailable. Moreover, the synthetic im-
ages represent hour-by-hour weather and radiative conditions un-
likely to ever be available from a remote sensing platform. Hence
daily ET estimates can be obtained from summing frequent ET
estimates instead of extrapolating instantaneous ET estimates
using constant evaporative fraction assumptions (e.g., Lhomme
and Elguero 1999).

Model limitations were also indicated by this study, wherein
predicted temperatures and vegetation cover showed discrepan-
cies with actual observations. For the FISEQ3 study, land surface
temperatures were not always correlative with fractional cover, a
condition possibly due to crop row structure, wherein subcanopy
soil temperatures were significantly different from uncovered soil
temperatures. This Iack of correlation could also result from using
nonrepresentative remote sensing images. For example, image

data collected during an irrigation event would bias model esti-
mates for other times. Absent additional field information, how-
ever, future implementations would require statistical constraints
to ensure model robustness

Conclusions

A remote sensing modeling approach has been developed to re-
duce problems estimating ET when image data are sparse. The
approach forecasts crop cover density and surface temperatures
after initialization by a remote sensing scene. The forecasting was
accomplished by combining spatially distributed information
from an airborne remote sensor with time-series radiometric ob-
servations from the ground. In this way vegetation cover could be
estimated at. daily time steps and surface temperatures can be
estimated at subhourly time steps. The forecast approach was
tested for a 22-day period using data collected over a cotton crop
at an experimental site (FISEQ3) in Maricopa, Ariz. Spatially and
temporally distributed (at 1/4 hourly intervals) surface tempera-
tures compared acceptably with airborne observations, where the
RMSE was 2.1°C and mean bias 0.4°C. Spatially distributed
vegetation indices observed on June 17, 2003 were converted to
fractional cover and modeled up to the next available remote
sensing observation on July 9. The forecast indices agreed rea-
sonably with actual observations where linear regression results
showed R?=0.65 and an RMSE of 0.65. These results indicate the
subsequent modeling with synthesized image data could produce
accurate daily ET estimates when high-quality remote sensing
data are unavailable. Unfortunately, equivalent data from space-
borne platforms are not routinely available, and thus airborne
platforms are needed for current research. Future investigations
will be needed to assess the impact of the approach upon ET
modeling, its validity for all parts of the growing season, and its
applicability to other locations and crops.
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